End-of-Course Assessment

ISTEP+: Algebra I Graduation Examination

Reference Sheet

Equation of a Line

Slope-Intercept Form:	Point-Slope Form:	Standard Form of a Linear Equation:
$\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$	$y-y_{1}=m\left(x-x_{1}\right)$	$A x+B y=C$
where $m=$ slope and $b=y$-intercept	where $m=$ slope and $\left(x_{1}, y_{1}\right)$ is a point on the line	where A and B are not both zero

Slope of a Line

Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be two points in the plane.

$$
\text { slope }=\frac{\text { change in } y}{\text { change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
\text { where } x_{2} \neq x_{1}
$$

Standard Form of a Quadratic Function

$$
\begin{aligned}
& f(x)=a x^{2}+b x+c \\
& \text { where } a \neq 0 \\
& \text { axis of symmetry : } x=-\frac{b}{2 a}
\end{aligned}
$$

Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\text { where } a x^{2}+b x+c=0 \text { and } a \neq 0
$$

Pythagorean Theorem
$\sum_{b}^{c} a \quad a^{2}+b^{2}=c^{2}$

