End-of-Course Assessment

ISTEP+: Algebra I Graduation Examination

Reference Sheet

Equation of a Line		
Slope-Intercept Form:	Point-Slope Form:	Standard Form of a Linear Equation:
y = mx + b	$y - y_1 = m(x - x_1)$	Ax + By = C
where $m =$ slope and $b = y$ -intercept	where $m =$ slope and (x_1, y_1) is a point on the line	where A and B are not both zero

Slope of a Line		
Let (x_1, y_1) and (x_2, y_2) be two points in the plane.		
slope = $\frac{\text{change in } y}{\text{change in } x} = \frac{y_2 - y_1}{x_2 - x_1}$		
where $x_2 \neq x_1$		

Standard Form of a Quadratic Function	
$f(x) = ax^2 + bx + c$	
where $a \neq 0$	
axis of symmetry : $x = -\frac{b}{2a}$	

Quadratic Formula	
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
where $ax^2 + bx + c = 0$ and $a \neq 0$	

Pythagorean Theorem

$$\sum_{b}^{c} a^{a} = c^{2}$$